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Abstract. Following a recently developed approach to the problem of divergences in field 
theory, we compute the secand-order correction to the graviton Green function arising 
irom insenion of the graviton i m p .  Ar was rhe case wirh rhe caicuiaiions reported eariier, 
no subtractions, regularizations or renormalizations are required. Our corrected graviton 
Green function depends only logarithmically on a constant I and satisfies the appropriate 
Slavnov-Ward identity (SWI).  The absence of divergences means that we do not need to 
introduce counter terms into the Einstein Lagrangian. I t  also allows a straightforward and 
expeditious evaluation of the self-energy insertion. In addition, we repon the calculation 
ofthe correction to the graviton Green function arising from the insertion ofa  scalar meson 

the SWI. On the other hand, if the gravitons are coupled to the scalar field through the 
improved energy tensor of Callan, Coleman and Jackiw, the corrected graviton Green 
function does satisfy the SWI .  The correction as well as the self-energy is traceless. Thus 
there is no conformal anomaly. 

!OO" Again !here z x  "-2 divPrgPnces. HWP"tT, in this case wc fin!! !ha! the XI"!! YiQ!a!es 

1. Introduction 

Since the formulation of the quantum theory of gravitation by Feynman (1963) and 
DeWitt (1967), the general framework for evaluating radiative corrections to processes 
involving gravitons has been available. However, the divergences associated with loop 
graphs in quantum gravity are more severe than in other theories of physical interest. 
Thus, it is correspondingly more difficult to isolate the finite parts of the amplitudes 
in a manner consistent with the symmetries of the theory. Actual calculations of 
radiative corrections had to await the development of the dimensional regularization 
(DR) method by 'tHooft and Veltman (1972). This method has the great merit of 
maintaining gauge invariance throughout the calculations. Hence, it is much better 
suited for Yang-Mills fields and quantum gravity and is almost exclusively used in all 
works. However, the age-old unsolved problem of divergences must still be dealt with 
before one can make theoretical predictions. In the DR method, the pole terms must 
be cancelled by suitably chosen counter terms in the Lagrangian which likewise diverge 
as  the dimensions of spacetime approach four. In case ofquantum gravity the required 
terms have a different dependence on the field variables from those present in  the 
original Lagrangian. Consequently, the divergences can not be absorbed by field 
renormalization. Deser and van Nieuwenhuizen (1974) have shown the Einstein- 
Maxwell fields and Dirac-Einstein tieids to be non-renormalizabie at the one-loop 
level. Capper et a/  (1974) and Capper and Duff (1973) computed respectively the 
photon and neutrino corrections to the graviton propagator using the DR method and 
found non-renormalizahle counterterms. However, 't Hooft and Veltman (1974) have 
shown pure gravity to be *enormalizable at the one-loop level. 
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In order to understand how nature avoids divergence problems which seem inevi- 
table in our current formulation of field theory, it is necessary to introduce new 
assumptions and modify the formalism. Perhaps it is necessary to question some of 
our most cherished notions about the way physical influences propagate in spacetime. 
This is a problem with a long history. Therefore, it is conceivable that to make progress 
one must at first tolerate incomplete solutions whose only purpose in  hindsight might 
be to point the way. At present, there does not seem to be any empirical evidence to 
suggest a physical mechanism that eliminates divergences. Accordingly, such assump- 
tions are necessarily ad hoc. In fact, the regularization methods represent ad hoc 
assumptions that are not necessarily specified in physical terms and are justified only 
by their limited success in dealing with divergences. We emphasize that taking the 
limit of infinite regulator masses or the limit of spacetime dimension equal to four as 
the case may be, does not ameliorate the qualitative modification of the field theory 
caused by the regularization procedure. 

The method proposed recently (Zaidi 1990) makes the explicit physical assumption 
that the product of two scalar propagators with equal arguments abruptly vanishes if 
their argument, in Euclidean space, is less than a natural constant 4/2. Clearly, this 
assumption cannot be confirmed or refuted by experiment if the natural constant is 
small enough. Six two-point functions from theories of physical interest were computed 
in second order using this assumption. These included, the Green function of a vector 
meson in a typical Yang-Mills theory, and the photon and neutrino loop corrections 
to the graviton Green function. All these results depended logarithmically on the 
constant /,satisfied the appropriate SWI and had the imaginary part required by unitarity 
forfinite values of 1. The results generally agreed with those obtained by the DR method 
with the exception of the pole terms that are absent in our approach. In addition, the 
calculation of the photon-loop and neutrino-loop insertions based on DR method leads 
to conformal anomalies whereas our corrections to the graviton Green function and 
the self-energies were traceless. As our results were free of divergences, no regular- 
izations or renormalizations were required. Inasmuch as the quantity / occurred only 
in the arguments of logarithms and determined the relationships between the physical 
values of coupling constants and masses, and the parameters of the Lagrangian it is 
entirely feasible to take it to be as small as the Planck length. 

In this paper, we report the calculations of the corrections to the graviton Green 
function arising from the graviton-loop and the scalar-loop respectively. The graviton- 
loop calculation is naturally somewhat lengthy but the absence of singular expressions 
in our approach makes it a straightforward exercise. 

2. Graviton self-energy insertion 

The graviton self-energy was calculated by Capper ef a/ (1973) using the DR method. 
They gave a detailed formulation of quantum gravity based on the Einstein Lagrangian 
and expanded the action in powers of Newton’s constant. They also derived the S W I .  

We briefly summarize their development and adopt their notation as far as possible. 
The generating functional is given by 

DZ”” A[$‘”] exp(i(-2K2i’”R,,+ K - ’ g ” j , ,  - K-’a-’(J,Z”’’)2)). (1) 

Here K 2  = 32n-G and G is Newton’s constant. The angle brackets denote integration 
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over Minkowski space. In addition, the scalar curvature has been expressed in terms 
of the variable g‘” introduced by Goldberg (1958) which is defined as 

I”” = 4 f ”  ((2) 

and g = -det(g,,). The Fadeev-Popov determinant is denoted by A[i‘”] and the gauge 
fixing term is K2-a-l(J,I ’”)*, where (Y is the gauge parameter. 

Defining the graviton field ++” by the equation 

I+” = + K+’” (3) 

(4)  I G -  - ](U1 o+l‘d’ .  

onwards, indices are raised and iowered using vrrv. tiowever, i i i  order io simpiifji the 

and expanding the action in powers of K one can write 

The flat space metric tensor corresponds to the choice TI( ?leu) = 2. From this point 

notation, all the indices are written as subscripts. Accordingly, before summing over 
repeated indices one should imagine one of the dummy indices to be a superscript. 
Thus, we have the expressions 

(5 )  ] io)- I 
G - (-2+op,o+op,“ +a+<*,.o+pP,“+ +eK,p4mp,x - 4ap.o+np.J 

and 

p - -  K 
0 - ( ~ ~ p ( + m ! 3 , ~ + ~ p , o  -f+,,,,+pp,~+2+,ro,p+”p.o 

(8) 

!n writing ( 5 )  and (8) the gauge parameter oi has been set equal to -1. The expression 
for the zeroth-order generating functional becomes 

2 
O,p~,=f(~,,~?lp,+ ?=r?a~-?u~?*u)J  . 

(9) 

The quantity Df;,. is the graviton propagator. The generating functional can now be 
written as 

D++” A[$”‘] exp(i[Ig’+ I : ’+  K(ju.+,..)l). (13) 
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Turning now to the factor A[i’”l, one can express its inverse as follows 

A-’[i’”I= I WA D?. e x P ( i ( ~ ) l . ? p . J 2 5 ~ ) - i ~ ( ? ” [ 4 ~ ” , ~ ~  - $JrpnunJrrd,, 

- 4 p p . p ~ u ~ J p  f 4pwJ~I&)), (14) 

The interaction terms between graviton and ghosts can be read off from the above 
expression. In addition, the ghost propagator is seen to be 

( O ~ T [ S , ( X ) ~ ~ ) I I O )  = ?,.D(x). (15) 
Finally, a factor (-1) has to be inserted for each ghost-loop in perturbation series 
since it is A[&,,] that occurred in (1) whereas (14) represents A-’[&]. The self-energy 
can now be computed by taking functional derivatives. The five trilinear couplings of 
the gravitons in (6) give rise to 15 distinct loop-contributions each of which has 18 
terms due to identical particles. By contrast, there are only 10 distinct ghost-loop 
contributions. 

The central piece in this self-energy calculation is the Fourier transform of the 
product of derivatives of the D-functions. Thus, after transition to Euclidean space 
one must evaluate integrals of the form 

r 
J d4X e - ’ ” 4 ~ ~ . . . s ( x ) 4 , ” . . . ~ ( x )  (16) 

where the number of derivatives on the two D-functions might he partitioned as (0,2),  
(1, l) ,  (1,2) or (2,2). Unfortunately all these products of derivatives of D functions 
are very singular so that, as it stands, the above expression is quite meaningless. If  
one attempts to assign meaning to these divergent integrals by cutting them off at a 
length I, the results will be proportional to I-2 or I-4. Such a cutoff would have to be 
followed by carefully devised subtractions which in turn would have to be attributed 
to counter terms in the Lagrangian. There is still the matter of producing a correction 
to the Green function that satisfies the SWI. Clearly, this is hardly an approach suited 
to the problem at hand. 

To explain our method, we begin with the observation that the products of deriva- 
tives of D-functions can be written as follows: 

D,, p . . . ~ ( ~ ) ~ , ~ u . . . , ( ~ ) =  Pb;l.... (J)[D(x)12. (17) 
The above result holds for x Z 0 and Pbnp..,(J) is a tensor differential operator of rank 
n constructed solely out of J,,, S,, and numerical coefficients. In the case under 
consideration, n = 2, 3 or 4. In reflecting upon the mathematical identity (17) one has 
to concede that empiricai knowiedge vaiidates the representation o i  the propagators 
and their products as they are used in this identity only through length scales of the 
order of lO-”m whereas in evaluating (16) we must assume it for all short distances. 
Here we invoke the crucial physical assumption that the quantity [D(x)]’ which is 
believed to behave as at short distances, actually vanishes if x2 is less than 4r2. 
Accordingly, the replacement 

(18) 

is in order. Consistency demands now that the product of derivatives of the propagators 
occurring on the left-hand side of (17) be evaluated by making the above replacement. 
This is our definition of the generic product of derivatives of propagators occurring 

[ D(x)I2+ B(x2 - 412)[D(~)]2 
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in (16). lntroducing (17) and (18) into (16) and integrating n times by parts we shall 
obtain 

J dJx e-''' &..dx)~,,.. . A X )  

*Q;,:.. . ,(k) d4x e~""[D(x)]'e(x2-41'). (19) 

The integral on the right-hand side has already been evaluated (Zaidi 1990). The 
Minkowski space result is approximately 

J = d4x e~'"[D(x)]*8(x2-412)=-i(16?r2)-' l o g [ 1 2 ( k ' - i ~ ) ] .  (20) 

The quantity Qbnp..i(k) is a tensor of rank n constructed out of the components of 
the vector k. All such tensors that are needed in this work are compiled in appendix 
B. We now have a well-defined expression for all integrals of the form (16) and expect 
the self-energy to involve J as a factor. As discussed previously (Zaidi 19901, graphs 
with seagull or  tadpole types of structure do not contribute in the framework of the 
above physical assumption. It remains to perform a perfectly well defined and straight- 
forward computation. Whether the result satisfies the SWI  remains to be seen. It is 
gratifying to see that it does. This is not trivial. For example, we show in the next 
section that a scalar meson loop insertion violates the SWI unless one uses the improved 
energy tensor of Coleman and Jackiw (1970). To proceed, the graviton self-energy 
II, , , , (x-y) is defined by sthe equation 

I 

Here, Zin' and 2''' are the generating functionals including terms of order KO and 
K 2  respectively and the rest of the notation is standard. In appendix A, we give details 
and do  part of the calculation of the graviton-loop contribution in explicit terms. Here, 
in order to present the results, we first introduce the notation 

All computed expressions for the various self-energy contributions in this work can 
be specified in terms of five constants A,  B, C, E and F occurring in the following 
formula: 
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The net contribution is accordingly 

I I$z i ' "" ' (k )o{328,  104, -81, 81, -59). ( 2 5 )  
Finally, the graviton Green function including the graviton-loop insertion is 

where the tensor T,,,(k) is defined by 

T,wAk) = b , v ~ ~ , S ~ Q ~ , ( k ) b , o , 7  (27) 

and the tensor S,,,, is composed of the square bracket of (22) with the constants given 
by (25) .  We can represent TUum,(k) as follows. 

T,,,,(k)a{328, -106,-81,81,46}. (28) 

The correction to the Green function due to the graviton loop has different structure 
from those due to photon, neutrino and scalar meson loops. The last three are 
proportional to each provided the scalar mesons are coupled through the improved 
energy tensor. In particular, the coefficient F is positive for the graviton loop correction 
and negative for the other cases. Consequently, in situations governed by Newton's 
law of gravitation, the graviton loop contribution to vacuum polarization has a different 
sign as compared with the other loops mentioned. Admittedly, this is a minute effect. 
Using (28) one can verify that 

k,T,,,,(k)k, =O. (29) 

k,EpAeo(k)k, = k + D ? k o ( k ) k  = - f ~ w .  

Consequently, the graviton Green function satisfies the SWI: 

(30) 

At this point one might wonder whether the S W I  is also satisfies for values of the 
constants other than those given in (25). To explore this we considerthe tensor T,,,(k) 
to be given in terms of arbitrary constants A, B, C, E and F and derive the constraints 
imposed upon them by the requirement that the Green function satisfy the SWI. In this 
manner, (29) yields 

(31) +A - B + E + F = o 
and 

C + E = O .  (32) 

These two conditions are clearly satisfied by the constants in (25). 
Our results bear the following relationship to those of Capper et a/ (1973). Their 

computed graviton-loop and ghost-loop contributions can also be represented by (22). 
They give explicit formulae for the quantities corresponding to our constants A, B, C, 
E and F as rational function of w ( w  = 2 corresponds to four dimensions). In place 
of our integral J given by (20). their formulae contain the integral that is basic to the 
DR method 

I, = d'"q[q2(q-p)']-'. 

It is interesting to note that tensors multiplying I, in their work if evaluated for w = 2  
agree separately with our tensors for the ghost-loop and the graviton-loop. However, 



Self-energy of the graviton in second order 4331 

they have to expand the counterpart of the entire right-hand side of (27) about w = 2 
to separate the correction to the Green function into a finite part and a pole term. 
There are also some subtleties involved in continuing the amplitudes to the neighbour- 
hood of UJ = 2. 

3. Scalar meson loop insertion 

The standard formulation of scalar field theory leads to the energy tensor 

T G V = h h  - ~ V + ~ J , ~ J J , + .  (33) 

It is a source of gravitons in the Einstein theory and gives rise to the self-energy 
contribution 

4 

(34) 

K 2  j IISalar) in,,,, ( k )  =- d4x e-'"[D,,,D,,,+ D,,.&um - v ~ D , , , D , ~ ,  

- ~&,wD,w + ~ ~ r v ~ u e D , m P , ~ p  1. 
Using (19) and the quantities Q{$) , , , ) (k )  given in appendix B, i t  is straightforward 
to obtain 

(35) IIFdl l , )  n,,, = { 4 , - 3 , - i , t , 3 } .  

Evidently, the scalar-loop insertion does not satisfy (31) so the SWI is violated. 
That the scalar field energy tensor leads to additional difficulties in field theory has 

been the subject of investigation by Coleman and Jackiw (1970) and Callan er a1 
(1970). On the other hand, the improved energy tensor of Coleman and Jackiw (1970) 
was shown by Callan et a/  (1970) to have finite matrix elements in all orders of 
renormalized perturbation theory. In addition, the currents associated with scale and 
conformal transformations have much simpler expressions in terms of the improved 
tensor. However, their proof has been criticized (Symanzik 1970). Furthermore,'t Hooft 
and Veltman (1974) made a study of all one-loop divergences of pure gravity and of 
gravitation interacting with scalar fields and concluded that even though the improved 
energy tensor reduces the divergences of diagrams without internal gravitons, divergen- 
ces that cannot be absorbed in a field renormalization still remain. Callan er af (1970) 
formulate the theory of gravitation such that the improved energy tensor appears as 
the source of gravitons and show that the theory meets all the experimental tests that 
have been applied to the general theory of relativity (see also Deser 1970). Thus, it is 
important to evaluate the self-energy using the improved energy tensor which can be 
written as 

(36) 2 2  Q,,=T,,-b(J,J,-q,,J )4 . 
Its contribution to self-energy is 

( k )  i n ( C d c " d n - J a c k i w 1  
*"vi 

= g /  d4x e-'X'[16D,,,D,,,-8q~,D,,,,D,,,- 16D,,D.,,, 
1 2  

+477,.J.,,D,,, + ~ u v ~ m T ~ , ~ r e ~ , , 7 p  + 2 4 , J ? w , +  2 ~ ~ , , ~ u 7 1 s y m . .  (37) 
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The expression inside the square brackets is to be symmetrized with respect to inter- 
change of (p-U), ( w - 7 )  and with respect to ( p w ) - ( o ~ ) .  Following steps already 
described, we find 

i k )  
(Coleman-Jnckiwl n,,, 

This self-energy is, up to an overall numerical factor, the same as that for the photon 
or the neutrino loop (Zaidi 1990). It follows that 

( k )  ( 3 9 )  
n(Coleman-J#ckiwl n(Caleman-Jackiw) b w ,  .PVS (k)b,,,= +Vwr 

and 

( k ) = O .  (40) 

Furthermore, this loop insertion shares with the photon-loop and the neutrino-loop 
insertions the important property 

(Coleman-Jaskiwu) 
k,n,,,, 

( k ) = O .  ( 4 1 )  
(Coleman-lackiwl n +LVo<r 

In summary if scalar mesons are coupled to gravitons through the improved energy 
tensor, the SWI is satisfied and the self-energy as well as the correction to the graviton 
Green function is traceless. None of these statements is true for the ordinary scalar 
loop insertion of ( 3 5 )  nor does it satisfy ( 3 9 ) .  

4. Conclusions 

Calculation of the corrections to the graviton Green function is quite a test of the 
regularization methods used to ascribe meaning to the divergent integrals encountered 
in field theory calculations. Thus, Halpern (1966) based his work on techniques that 
were available before the D R  method was developed. Later Brown (1973) applied this 
method to the calculation of the graviton-loop insertion. However the role of the 
tadpole terms in the context of DR was not well understood at that time. Complete 
calculations of the graviton, photon and neutrino loop insertions based on the D R  

method were finally performed respectively by Capper et al (1973, 1974) and Capper 
and Duff (1973). These authors also investigated the tadpole graphs and problems 
associated with analytic continuation of the amplitudes as functions of w. The aim of 
this work was to apply our method to compute the corrections to the graviton Green 
function. The graviton-loop insertion produces a result that satisfies the S W I  identity. 
No renormalization is performed, nor is it needed. Consequently, no counterterms 
need be introduced into the Einstein Lagrangian. Scalar-loop insertion is computed 
along the same lines using both the usual scalar-field tensor and the improved energy 
tensor. We find that even though we do not have divergences, the ordinary scalar-field 
tensor is unacceptable because it leads to a violation of the S W I  and a self-energy that 
is not traceless. The improved energy tensor does not have these defects. 
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This new approach to the problem of divergences has now been applied to most 
of the self-energies occurring in theories of physical interest. Extensions of this idea 
to three-point functions and eventually to higher orders is most desirable and planned. 
Finally, it would be very interesting to create a view of spacetime which justifies our 
basic assumption. 

Appendix A 

A part of the calculation which is typical of the manipulations involved in computing 
the graviton-loop contribution is discussed here in some detail. We choose to consider 
the graviton loop that has as vertices the first and the third terms of the trilinear 
couplings given in (6). This contribution to self-energy can be written as 

(AI) 

The factor of 4 arises because the coefficient of the third trilinear coupling is 2 and 
because there two such terms, in other words we have written II"" for II('"+II"". 
The curly bracket stands far the we!! known process of reducing the right-hand side 
to the Fourier transform of the products of vacuum expectation values. The result 
consists of nine terms each of which is composed of a factor arising from the action 
of zero, one or two derivatives on the external lines carrying the momentum k The 
other factor consists of a sum of two terms of the form ( - l ) " b , p , , b ~ ~ , . ( D - ( u ) D , ( u ) } .  
Here E and Cl stand for groups of indices representing zero, one or two derivatives 
and n is the number of derivatives with respect to v acting upon the propagators before 
translation invariance is used and the result expressed entirely in terms of U. Finally, 
the curly bracket now stands for just the the Fourier transform. Collecting terms one 
can write 

K '  
inziLq(k) = (i) ( 4 ) { ~  u ) ~ , p . , ( u ) ~ , p , s ( u ) ~ , , (  u ) ~ ~ " , ~ ( u ) ~ ~ " , ~ ( u ) ) m " ~ ~ .  

I IEikq  = T ,  + 2 T2+4T3+ 2 T4 (A2) 

where 

T> = (bmA=oqp(D,mpD,mm} + bapwb+To{D.mcD.n,}) (A3) 

T2 = - i k ~ ( b ~ p , b ~ p ~ ~ ( D , m D , ~ ~ } +  b,Pwbupnw{D.nD.mq}) (A4) 

T3 = -k,k,(b,,,b,,,,(D,,D,q} + bpnwbpwo{DD,aql) ( A 9  

and 

r, = -i k, ( b,,  b 16qn {D,,D,,l + b,,b,, (D,(, D , d ) .  (A6) 

Using (19) and the quantities Qyj ...,( k )  given in appendix B one can complete the 
calculation which now involves only algebraic manipulation. The result is of the form 
~f (22) of the !er.! so i! EZI! be specified by giving the coeffidents A through F :  

n(l3) ..,,0{128, -116, -21,21, 11). (A13) 

The other 14 distinct contributions to the graviton loop are evaluated by following the 
same pattern. The 10 distinct ghost-loop contributions are simpler. 
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Appendix B 

The list of Q$'Jk) needed in this work are given in  the following. The method used 
to construct them is based on the observation that the indices of the tensor differential 
operator fri, ...( J )  of (17), must have the same permutation symmetry as the indices 
on the left-hand side of that equation. Then, it is only a matter of making an ansatz 
and determining the coefficients. 
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